
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5580--99-8355

Perspective Splatting

J. EDWARD SWAN II

Advanced Information Technology Branch
Information Technology Division

KLAUS MUELLER

TORSTEN MOLLER

NAEEM SHAREEF

ROGER CRAWFIS

RONI YAGEL

Ohio State University
Columbus, Ohio

May 10, 1999

Approved for public release; distribution is unlimited.

~L•u PCT21 A~C-!D

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORTDATE 3. REPORTTYPEANDDATESCOVERED

May 10, 1999

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Perspective Splatting

6. AUTHOR(S)

J. Edward Swan II, Klaus Muellert Torsten MoI1ert Naeem Shareeft
Roger Crawfis,1 and Roni Yagelt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5320 NRLMR/5580--99-8355

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Office of Naval Research The Ohio State University AGENCY REPORT NUMBER

800 North Quincy Street Columbus, OH 43210
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

-The Ohio State University, Columbus, OH 43210

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Splatting is a popular direct volume rendering algorithm that was originally conceived and implemented to render orthographic
projections. This paper describes an anti-aliasing extension to the basic splatting algorithm, as well as an error analysis, that make it
practical to use for perspective projections. To date, splatting has not correctly rendered cases where the volume sampling rate is
higher than the image sampling rate (e.g. more than one voxel maps into a pixel). This situation arises with perspective projections of
volumes, as well as with orthographic projections of high-resolution volumes. The result is potentially severe spatial and temporal
aliasing artifacts. Some volume ray-casting algorithms avoid these artifacts by employing reconstruction kernels which vary in width
as the rays diverge. Unlike ray-casting algorithms, existing splatting algorithms do not have an equivalent mechanism for avoiding
these artifacts. In this paper we propose such a mechanism, which delivers high quality splatted images and has the potential for a
very efficient hardware implementation. In addition, we analyze two numerical errors that arise with splatted perspective projections
of volumes, and describe the rending-time versus image-quality tradeoffs of addressing these errors.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Volume rendering Resampling Perspective projection 41
Splatting Reconstruction 16. PRICE CODE
Direct volume rendering Anti-aliasing

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

CONTENTS

1. Introduction .. 1

2. Previous W ork ... 2

3. Advantages and D isadvantages of Splatting ... 4

3.1 Advantages of Splatting ... 4
3.2 Inherent D isadvantages of Splatting ... 5
3.3 Im plem entation-Based D isadvantages of Splatting ... 5

4. An Anti-Aliasing Technique for Splatting ... 6

4.1 The Need for Anti-Aliasing in Volum e Rendering .. 6
4.2 N ecessary Conditions to Avoid Aliasing .. 8
4.3 An Anti-Aliasing M ethod for Splatting .. 9
4.4 Correctness of the M ethod .. 11
4.5 Frequency and Spatial D om ain Behavior .. 13

5. Results .. 14

6. Analysis of Perspective Splatting Errors .. 16

6.1 Align Footprint Polygon Perpendicular to Center Ray .. 17
6.2 Align Every Sight Ray Perpendicular to Footprint Polygon 18

7. Future W ork .. 18

7.1 Applications to Texture M apping ... 18
7.2 Other Areas of Future W ork .. 19

8. Acknowledgm ents .. 20

References .. 20

Figures and Tables .. 23

Author Affiliations .. 38

iii

Perspective Splatting

J. Edward Swan II, Klaus Mueller, Torsten Moller, Naeem Shareef, Roger Crawfis,

and Roni Yagel

Abstract

Splatting is a popular direct volume rendering algorithm that was originally conceived and

implemented to render orthographic projections. This paper describes an anti-aliasing

extension to the basic splatting algorithm, as well as an error analysis, that make it

practical to use for perspective projections. To date, splatting has not correctly rendered

cases where the volume sampling rate is higher than the image sampling rate (e.g. more

than one voxel maps into a pixel). This situation arises with perspective projections of
volumes, as well as with orthographic projections of high-resolution volumes. The result

is potentially severe spatial and temporal aliasing artifacts. Some volume ray-casting

algorithms avoid these artifacts by employing reconstruction kernels which vary in width

as the rays diverge. Unlike ray-casting algorithms, existing splatting algorithms do not

have an equivalent mechanism for avoiding these artifacts. In this paper we propose such a

mechanism, which delivers high-quality splatted images and has the potential for a very

efficient hardware implementation. In addition, we analyze two numerical errors that arise

with splatted perspective projections of volumes, and describe the rendering-time versus

image-quality tradeoffs of addressing these errors.

Keywords and Phrases: volume rendering, splatting, direct volume rendering,
resampling, reconstruction, anti-aliasing, perspective projection.

1. Introduction

In the past several years, direct volume rendering has emerged as an important technology in the fields of

computer graphics and scientific visualization, and splatting is one of several popular direct volume

rendering techniques. The majority of images produced through direct volume rendering have used

orthographic projections, in part because such projections are useful in many of the application areas

(such as biomedical and fluid flow visualization) which have initially motivated work in volume

rendering. Perspective projections offer a viewpoint which more naturally correlates to the way we

perceive the physical world, and perspective projections are essential when it is desirable to "fly through"

Manuscript approved February 25, 1999. 1

the data - flight simulators are one example. A perspective projection of a volume dataset gives another

perceptual cue which can be employed when comprehending spatial relationships.

Any volume rendering algorithm which supports perspective projections has to deal with the

problem of non-uniform sampling produced by diverging viewing rays. If not addressed this can result in

potentially severe aliasing artifacts. Although other volume rendering approaches have dealt with this

problem (e.g. ray-casting [21,23] and shear-warp [7,11]), to date the problem has not been addressed in

the context of splatting. In this paper, we present a modification to the splatting algorithm which prevents

the aliasing that arises from this non-uniform sampling. The same type of resampling problems occur

with an orthographic projection if the volume resolution is higher than the image resolution (e.g. if many

voxels project into each pixel). Our modified splatting algorithm also avoids aliasing in this situation.

We recently presented our algorithm at the Visualization '97 conference [26]. The current paper is

an expanded version of this 6onference publication. In addition to an extended explanation of the

anti-aliasing technique itself (including a detailed description of the intuitive basis of the technique based

on frequency and spatial domain diagrams), the current paper analyzes two errors that arise with splatted

perspective projections of volumes, and describes the rendering-time versus image-quality tradeoffs of

addressing these errors. It also discusses applications of the technique to traditional texture mapping, and

other areas of future work.

In the next section we describe the splatting algorithm and related previous work, and then we give

some advantages and disadvantages of splatting as compared to other volume rendering techniques. In

Section 4 we describe our anti-aliasing technique and argue for its correctness. We follow this with

implementation details and example images. In Section 6 we analyze perspective splatting errors, and in

Section 7 we discuss our findings and indicate areas of future work.

2. Previous Work

The splatting technique has been used to directly render volumes of various grid structures [16,29]

and for both scalar [13,29,30,31] and vector fields [5]. The basic algorithm, first described by Westover

[29], projects each voxel to the screen and composites it into an accumulating image (Figure la). It solves

the hidden surface problem by using a painter's algorithm: it visits the voxels in either a back-to-front or

front-to-back order, with closer voxels overwriting farther voxels. Splatting is an object-order algorithm:

the resulting image is built up voxel-by-voxel. This is in contrast to volume rendering by ray-casting,

which is an image-order algorithm that builds up the resulting image pixel by pixel.

As each voxel is projected onto the image plane, the voxel's energy is spread over the image raster

using a reconstruction kernel centered at the voxel's projection point (Figure Ib). This reconstruction

kernel is called a "splat"; its name comes from the colorful analogy of throwing a snowball against a wall,

-2-

with the spreading energy analogous to the "splatting" snow. Conceptually, the splat is considered a

spherically symmetric 3D reconstruction kernel centered at a voxel. But because the splat is reconstructed

into a 2D image raster, it can be implemented as a 2D reconstruction kernel. This 2D kernel, called a

"footprint function", contains the integration of the 3D kernel along one dimension (Figure 1c). Because

the 3D kernel is spherically symmetric, it does not matter along which axis this integration is performed.

The integration is usually pre-computed, and the footprint function is represented as a finely sampled 2D

lookup table. The 2D table is centered at the projection point and sampled by the pixels which lie within

its extent. Each pixel composites the value it already contains with the new value from the footprint table.

Under certain conditions (regular volume grid spacing, orthographic view projection, radially symmetric

splat kernel) the footprint table can be computed once and used unmodified for all voxels. Under different

conditions, the footprint function will vary, and consequently must be re-computed for each view (when

there is a non-symmetric kernel) and possibly for each voxel (when there is a perspective projection).

Recent work has extended the original splatting algorithm to achieve higher quality as well as faster

rendering. To improve image quality, in later work Westover [30,31] first accumulates splats onto a 2D

sheet that is aligned with the volume axis most parallel to the view plane, and then composites the sheets

in depth order into the image with a matting operation. Image quality is also affected by the size, shape,

and type of the reconstruction kernel used. Laur and Hanrahan [13] change the size of a splat based upon

the cell it represents in an octree representation of the volume. Mao [16] uses spherical and ellipsoidal

kernels with varying sizes to splat non-rectilinear grids. Mueller and Yagel [19] use an image-order

splatting approach which improves accuracy when using a perspective projection. And while to date most

splatting implementations have used a Gaussian reconstruction kernel, other kernel types can generate

higher quality images. Max [17] and Crawfis and Max [5] propose quadratic spline functions, optimized

for certain conditions, as splat kernels.
To improve rendering speed, Westover [30] maps view dependent footprints with a circular or

elliptical shape to a generic footprint table which only needs to be computed once. Laur and Hanrahan

[13] approximate splats with a triangle mesh and use graphics hardware to quickly scan convert the

footprint. Crawfis and Max [5] and Yagel et al. [35] also use texture mapping hardware to quickly render
splats represented as textures mapped to polygons. Splatting can also be accelerated by preprocessing the

volume and culling voxels which will not contribute to the final image. Laur and Hanrahan [13] cull with

an octree structure, and Yagel et al. [35] extract and store only the most visually significant voxels.

-3-

3. Advantages and Disadvantages of Splatting

In this section we compare splatting to other rendering algorithms. When listing the disadvantages of

splatting, we distinguish between inherent problems and those that are due to inaccuracies in current

splatting implementations.

3.1 Advantages of Splatting

The main advantage of splatting over ray-casting is that splatting is inherently faster. In ray-casting,

reconstruction is performed for each sample point along the ray. At each sample point a k3 convolution

filter is applied, where k is the dimension of the filter. Even if, on the average, each of the n3 voxels are

sampled only once, ray-casting has a complexity of at least k3n 3 . In splatting, on the other hand, the

convolution is precomputed, and every voxel is splatted exactly once. Each splat requires k2 compositing

operations. Therefore, one can expect a complexity of at most k2n 3 . This gives splatting an inherent

speed advantage. An additional benefit is that one can afford to employ larger reconstruction kernels and

improve the accuracy of splatting, incurring an O(k 2) penalty instead of an O(k 3) penalty.

Because splatting is an object-order rendering algorithm, it has a simple, static parallel

decomposition [14,31], where the volume raster is evenly divided among the processors. It is more

difficult to distribute the data with ray-driven approaches, because each ray might need to access many

different parts of the volume raster.

Splatting is trivially accelerated by ignoring empty voxels. It can be accelerated further by

extracting and storing just those voxels which contribute to the final image [35], which prevents

traversing the entire volume raster. This is equivalent to similar acceleration techniques for volume ray-

casting, such as space-leaping [34] or fitted extents [25], which accelerate ray-casting by quickly

traversing empty space.

Because splatting generates images in a strict front-to-back or back-to-front order, observing the

partially created images can give insight into the data which is not available from image-order

techniques. In particular, with a back-to-front ordering, partial images reveal interior structures, while

with a front-to-back ordering it is possible to terminate the rendering early [19].

Finally, splatting is the preferred volume rendering technique when the desired result is an X-ray

projection image instead of the usual composited image [19]. This is because the summation of pre-

integrated reconstruction kernels is both faster and more accurate than ray-casting approaches, which

require the summation of many discrete sums. Creating X-ray projection images from volumes is an

important step in the reconstruction algorithms employed by tomographic medical imaging devices

[19,3], such as CT and PET. Indeed, several authors of the current paper have applied the splatting-based

-4-

anti-aliasing technique reported here to the related problem of reconstructing 3D volumetric objects from

a set of cone-beam projection data [20], with good results.

3.2 Inherent Disadvantages of Splatting

There are two disadvantages inherent to the splatting method. One is that while an ideal volume renderer

first performs the process of reconstruction and then the process of integration (or composition) for the

entire volume, splatting forces both reconstruction and integration to be performed on a per-splat basis

[27,30] (see Figure 2). The result is incorrect where the splats overlap, and the splats must overlap to

ensure a sinooth image. This problem is particularly noticeable when the traversal order of the volume

raster changes during an animation [30].

Another disadvantage of splatting lies in the ordering of the classification, shading, and

reconstruction steps. For efficiency reasons, in splatting both (transfer function-based) classification and

shading are usually applied to the data prior to reconstruction. This is also commonly done in ray-casting

[12]. However, this produces correct results only if both classification and shading are linear operators.

The result of employing a non-linear classification or illumination model may cause the appearance of

pseudo-features that do not exist in the original data. For example, if we want to find the color and

opacity at the center point between the two data values a and b using linear interpolation, we would

compute (C(a) + C(b))/2 performing classification first, but the correct value would be C((a + b)/2)

performing interpolation first. Clearly, if C is a non-linear operator, these two results will be different.

Requiring C to be linear generally means that the shading model can only model diffuse illumination.

While methods exist for ray-casting that perform classification and shading after reconstruction

[2,18,23], this is not possible in splatting.

3.3 Implementation-Based Disadvantages of Splatting

With a ray-casting volume rendering algorithm it is easy to terminate the rays early when using a front-to-

back compositing scheme, which can substantially accelerate rendering. Although not reported in the

literature, early termination could potentially be implemented for splatting by employing the dynamic

screen mechanism [24] (also used by [11] for shear-warp volume rendering). Also, the ray-driven

splatting implementation [19] can support early ray termination.

While ray-casting of volumes was originally implemented for both orthographic and perspective

viewing, splatting was fully implemented only for orthographic viewing. Although for perspective

viewing ray-casting has to include some mechanism to deal with the non-uniform reconstruction that is

necessary with diverging viewing rays, for perspective viewing splatting needs to address several more

-5-

inaccuracies. As is described in [19], when mapping the footprint polygon onto the screen an accurate

perspective splatting implementation must:

(1) align the footprint polygon perpendicularly with the sight ray that goes through the polygon center,

and

(2) ensure that the sight ray for every pixel that falls within the screen extent traverses the polygon at a

perpendicular angle.

Both conditions are violated in the original splatting algorithm by Westover [29]. Mueller and Yagel [19]

describe a voxel-driven splatting method that addresses condition (1), and a ray-driven splatting method

that addresses both conditions. These errors are further studied in Section 6, which analyzes the

magnitude of the errors and the image quality versus rendering time tradeoffs in addressing them.

4. An Anti-Aliasing-Technique for Splatting

In this section we describe our splatting-based anti-aliasing method and argue for its correctness. In

Section 4.1 we describe why anti-aliasing is needed for volume rendering algorithms. In Section 4.2 we

develop an expression (Equation 2) which, if satisfied by a given volume rendering algorithm, indicates

that the algorithm will not produce the sample-rate aliasing artifacts that arise from the resampling phase

of the rendering process. In Section 4.3 we describe our anti-aliasing method, and in Section 4.4 we show

that our method satisfies the equation developed in Section 4.2, which argues for the correctness of the

method. Section 4.5 describes the anti-aliasing method's frequency domain characteristics and discusses

the effects of using a non-ideal reconstruction kernel.

4.1 The Need for Anti-Aliasing in Volume Rendering

The process of volume rendering is based on the integration (or composition), along an integration grid,

of the volume raster. This integration grid is composed of sight projectors (or rays) which pass from the

eye point, through the view plane, and into the volume raster. Before this integration can occur, the

volume raster has to be reconstructed and then resampled along the integration grid. This is illustrated in

Figure 3 for a perspective view of the volume, where the volume raster is shown as a lattice of dots, and

the integration grid is shown as a series of rays, cast through pixels, which traverse the volume raster.

Figure 3a shows the scene in eye space, where the eye is located at point (0, 0, 0) and is looking down

the positive z-axis (denoted +z). The perspective transformation means the integration grid diverges as it

traverses the volume. Figure 3b shows the same scene in perspective space, after perspective

transformation and perspective division (perspective space is also commonly called screen space). Here

the volume raster is distorted according to the perspective transformation, and because the eye is

considered to be located at negative infinity, the integration grid lines are parallel.

-6-

The reconstruction and resampling of the volume raster onto the integration grid has to be done

properly to avoid aliasing artifacts. Ideally, aliasing is avoided by the following criteria:

Criteria 1: Sample above the Nyquist limit.

Criteria 2: Reconstruct with an ideal filter.

The aliasing that results from an insufficient sampling rate (below the Nyquist limit) is called prealiasing

(or sometimes sample-rate aliasing) - it is caused by energy from the alias spectra spilling over into the

primary spectrum (see Figure 18i). The aliasing that results from a non-ideal reconstruction filter is called

postalias'ing - it is caused by the non-ideal filter picking up energy from the alias spectra beyond the

Nyquist limit (see Figure 18b and [22,15,32]). In practice, it is not possible to implement an ideal

reconstruction filter, and so Criteria 2 cannot be achieved - any realizable filter inevitably results in a

tradeoff among aliasing, blurring, and other artifacts [15]. However, reconstruction filters previously used

for splatting, in particular Gaussian filters, contribute very little postaliasing at the cost of substantial

blurring [15]. In current splatting implementations, the great majority of aliasing is prealiasing; it arises

from not achieving Criteria 1. Therefore, in the rest of this paper, when referring to the term 'aliasing' we

generally mean prealiasing, or aliasing that results from not sampling above the Nyquist limit.

It may be possible to sample above the Nyquist limit, but if this is not possible then aliasing can also

be avoided by low-pass filtering the volume to reduce its frequency content For an orthographic view

this low-pass filtering must be applied to the entire volume, but for a perspective view low-pass filtering

may only be required for a portion of the volume. This can most easily be seen in perspective space

(Figure 3b). Note that there is a distance along the +zp axis, denoted k,, where the sampling rate of the

volume raster and the sampling rate of the integration grid are the same. Previous to this distance there is

less than one voxel per pixel, and beyond this distance there is more than one voxel per pixel. When there

is more than one voxel per pixel, the volume raster can contain frequency information which is higher

than the integration grid can represent, and so aliasing is possible. In the next section this concept is

developed into an equation.

Note that same concept holds in eye space (Figure 3a). Here there is an equivalent distance along

the +z axis, denoted k, where the sampling rates of the volume raster and the integration grid are the

same (note that in general k # kP, but the two distances are related by the perspective transformation).

Aliasing artifacts can occur beyond k, when the distance between adjacent rays is greater than one voxel.

Volume ray-casting algorithms generally perform the reconstruction in eye space. Some avoid

aliasing by employing reconstruction kernels which become larger as the rays diverge [21,23]. This

provides an amount of low-pass filtering which is proportional to the distance between the rays. Splatting

algorithms generally perform the reconstruction in perspective space. Unlike ray-casting algorithms,

-7-

existing splatting algorithms do not have an equivalent mechanism to avoid aliasing. In this paper we

propose such a mechanism.

4.2 Necessary Conditions to Avoid Aliasing

In this section we give the conditions which are necessary for the volume rendering resampling process to

avoid introducing sample-rate aliasing artifacts into the integration grid samples. Let s be the volume

raster grid spacing (Figure 3a), and p = 1/s be the volume raster sampling rate. The volume raster

contains aliasing when either (1) the sampled function is not bandlimited, or (2) the function is

bandlimited at frequency Co but the sampling rate p is below the Nyquist limit: p < 2co.

If the first condition holds then aliasing will be present no matter how large p becomes. However, if

the function is bandlimited at (o, then as long as

p >2 (1)

there is no aliasing in the volume raster. Assuming that Equation 1 is true, our job is to resample the

volume raster onto the integration grid in a manner that guarantees that no aliasing is introduced.

Let 0 represent the sampling frequency of the integration grid. For a perspective projection the

integration grid diverges (Figure 3a) and therefore 0 is a function of distance along the z axis: 0 = O(d),

where d is the distance. For an orthographic projection we can still express 0(d) as a function, but it will

have a constant value. As illustrated in Figure 3, at k the sampling rates of the volume raster and the

integration grid are the same: p = O(k).

The distance k naturally divides world space (and likewise kP divides perspective space) into the

following two regions (note that depending on the viewing parameters, the volume raster might lie

entirely in either region; Figure 3 shows the most general case where the volume raster straddles the

regions):'.

Region 1: d < k. This is the case for the region in Figure 3a previous to k. Here 0(d) > p, and if

Equation 1 holds then 0(d) > 2o and there is no sample-rate aliasing.

Region 2: d > k. This is the case for the region in Figure 3a beyond k. Here 0(d) < p, and so it may be

that 0(d) < 2o. If this is the case, then the integration grid will contain a sample-rate aliased signal

once d is large enough.

This argument shows that, given Equation 1, with a perspective projection volume rendering algorithms

do not have to perform anti-aliasing within Region 1 (previous to the distance k). However, in Region 2

(beyond k), it is necessary to low-pass filter the volume raster to avoid aliasing. The amount of filtering

-8-

required in Region 2 is a function of d, and should reduce the highest frequency in the volume raster from

0o to co(d) so that

O(d) > 2co(d) (2)

in Region 2. To avoid aliasing with an orthographic projection the same equation must hold, although

O(d) and o(d) will be constant functions for all values of d.

Regardless of the projection, by showing that Equation 2 holds for a particular volume rendering

technique, we can claim that the technique does not introduce sample-rate aliasing artifacts when

resampling from the volume raster onto the integration grid.

4.3 An Anti-Aliasing Method for Splatting

As mentioned in Section 4.1 above, volume ray-casting algorithms avoid aliasing by using reconstruction

kernels which increase in size as the integration grid rays diverge, which satisfies Equation 2. In this

section we give a similar anti-aliasing algorithm for splatting.

As shown in Fi2ure 3a, at distance k the ratio of the volume raster sampling frequency P and the

below. Figure 4d shows what happens in perspective space. Previous to kP we draw the splats with

decreasing sizes according to the perspective transformation. Beginning at kP, we draw all splats the

same size, so splats with a zP coordinate greater than kP are the same size as splats with a zP coordinate

equal to kp.

Figure 5 gives the geometry for scaling splats drawn beyond k. If a splat drawn at distance k has the

radius r, , then the radius r 2 of a splat drawn at distance d > k is the projection of r1 along the viewing

frustum. This is calculated by similar triangles:

d
r2 = kr 1. (4)

Scaling the splats drawn beyond k is not enough to provide anti-aliasing, however. In addition to

scaling, the energy that these splats contribute to the image needs to be the same as it would have been if

they had not been scaled. As shown in Figure 5, splat 1 projects to the area S1 ,and if splat 2 has not been

scaled then it projects to the smaller area S2 . Because they are composited into the view plane in the form

of two-dimensional "footprint" filter kernels [30], the amount of energy the splats contribute to the view

plane is proportional to their areas (examples of energy measures include the volume under the splat

kernel or the alpha channel of the polygon defining the 2D splat footprint; splat energy tends to vary

according to the material properties of each voxel). Let E1 and E 2 represent some energy measure for

the splats. Because S1 -. E, and S2 - E 2 , by proportionality the following relationship holds between the

splats' energies and the splats' projected areas:

$2
E2 = -E 1 (5)

Note that Equation 5 follows from the assumption that splat 2 is not scaled. When splat 2 is scaled both

splats project to the same sized area, S1, on the view plane and hence contribute the same amount of

energy. This is not what we want, and so we calculate splat 2's energy by attenuating splat l's energy as

shown in Equation 5 (or more precisely, we calculate splat 2's energy by attenuating the energy splat 2

would have had if it had been positioned at distance k).

Now we transform Equation 5 into a form that is more computationally convenient. As shown in

Figure 5, let A 1 and A2 be the areas of the splats in world space. By similar triangles we can project the

area S2 to the area A 1 : A 1/d 2 = S2/D 2 , which we can express as

A 1 = (d)2S2. (6)

-10-

With a similar argument we can project S1 to A 2 :

A2 = (d) 2 S. (7)

Then dividing Equation 6 by Equation 7:

A - S2 (8)

A2 Sx I

and substituting Equation 8 into Equation 5:

=A 1E2 = Al-l (9)
A2

2Assume for now that the filter kernel is a circle for both splats. Then the areas of the splats are A1 =7tr
2

and A2 = tr 2 . By Equation 4 we can express A2 in terms of r1 •

A2 = k r1 . (10)

Then

E2= E(11)

which can be simplified to

E2= (k) 2 E1. (12)

Note that although here we have derived Equation 12 using circular filter kernels, we can also use any

other two-dimensional shape for the kernel, such as an ellipse, square, rectangle, parallelogram, etc. and

derive the same equation. We use Equation 12 to attenuate the energy of all splats drawn beyond k.

4.4 Correctness of the Method

We now demonstrate that Equation 2 holds for our anti-aliasing technique. We begin by deriving

expressions for the two functions in Equation 2 - O(d) (the integration grid sampling frequency at d)

and o(d) (the maximum volume raster frequency at d).

- 11-

We derive the integration grid sampling frequency O(d) with a similar-triangles argument.

Consider Figure 6, where q(d) is the integration grid spacing at distance d from the eyepoint. By similar

triangles

s q g(d) (13)

k d'

which can be written as

1 1 k
q(d) s (14)

Now 1/s = p, and I/q(d) is simply O(d), the integration grid sampling frequency at d. Thus we have

k
d k (15)

The maximum volume raster frequency o(d) can be derived from the scaling property of the

Fourier transform [1]:

t) <- JaJF(ao), (16)

where "<-k" indicates a Fourier transform pair. This says that widening a function by the factor a in the

spatial domain is equivalent to narrowing the function in the frequency domain by the factor 1/a. In our

anti-aliasing method, the widening for the splat kernels drawn beyond k is given by Equation 4:

d
a = k' (17)

Thus we have

t) 4 11 0), (18)

which shows that as the splat kernels are widened by dik, the frequency components of the function they

reconstruct are narrowed by k/d. Since all the frequencies of the volume raster are attenuated by k/d,

the maximum frequency (o is attenuated by the same amount, and we have:

k
)(d) = o - . (19)

Now we are ready to show that our technique satisfies Equation 2. We start with Equation 1:

p > 2o), which implies that the volume raster has sampled the function above the Nyquist limit.

Multiplying both sides by k/d we have

-12-

P 2 (20)

which we can write as:

0(d) Ž 203(d). (21)

This derivation says that if the volume raster has sampled the function above the Nyquist limit, our anti-

aliasing technique provides enough low-pass filtering so that sample-rate aliasing is not introduced when

the volume raster is resampled onto the integration grid. Note that this derivation only deals with the

prealiasing that results from an inadequate sampling rate - it does not address the aliasing or blurring

effects which result from using a non-ideal reconstruction filter.

4.5 Frequency and Spatial Domain Behavior

This section describes the frequency and spatial domain behavior of the anti-aliasing method, and it

illustrates the effects of reconstructing with a non-ideal reconstruction kernel. Figures 18 and 19 compare

the standard splatting technique with the new anti-aliasing technique. The figures analyze the technique

in two planes which are parallel to the view plane and include the volume raster and integration grid,

where one plane is located previous to the distance k and the other plane is located beyond the distance k.

For clarity, the diagrams are all drawn in one dimension; the extension to two dimensions is

straightforward.

Figure 18a shows the sampled signal in the frequency domain. Here the spectra have maximum

frequency (o and are replicated at intervals of p. Assuming Equation 1 is true, p > 2co and there is no

prealiasing in the sampled signal. Figure 19a shows the sampled signal in the spatial domain, with sample

spacing s.

The left-hand column of both figures shows the behavior of splatting previous to k. Figure 18b

shows an ideal splatting kernel, which has the value 1 in the range -(1/2)p to (I /2)p and 0 elsewhere,

and yields only the primary spectrum. This is compared to a realizable splatting kernel of radius R 1 ,

which has some smoothing in the passband and some postaliasing in the stop band [15, 22]. Figure 19b

shows the same two kernels in the spatial domain, where the realizable kernel has the radius r1 . The

sampled signal is multiplied (convolved) by the splatting kernel, yielding a reconstructed signal

(Figures 18c and 19c). This signal is then resampled by the integration grid samples (Figures 18d and

19d), which have a higher frequency than the volume raster. Figures 18e and 19e show the final result:

the reconstructed signal is convolved (multiplied) by the integration grid samples. Because the spectra are

farther apart than in the original signal (Figure 18a), no pre-aliasing is introduced.

-13-

The middle column of both figures shows the behavior of the standard splatting implementation
beyond k. The same splatting kernel used previous to k is used here (Figures 18f and 19f), yielding the

same reconstructed signal (Figures 18g and 19g). However, now the integration grid samples have a
lower frequency than the volume raster (Figures 18h and 19h). Figure 18i shows the result in the

frequency domain: the spectra of the resampled signal, although identical to those in Figure 18e, are

pulled closer together and overlap, resulting in prealiasing. In the spatial domain (Figure 19i), the

integration grid samples are not spaced close together enough to capture the variation in the reconstructed

signal.

The right-hand column of both figures shows the behavior of the anti-aliased splatting technique

beyond-k. Figure 18j shows that in the frequency domain, the ideal splatting kernel would no longer pass
all the frequency content in the volume raster (-(1/2)p to (1/ 2)p), but would instead only pass the

frequency content that could'be represented by the integration grid (-(1/2)4(d) to (1/2)¢(d)). This is

exactly what happens when modulating the reconstruction kernel by k/d (Equation 15). As shown in
Figure 18j, the splatting kernel used beyond k is also narrowed by kid, giving it the radius

kR2 = -•R1 (22)

In the spatial domain the splatting kernel has radius r 2 (Figure 19j), as given by Equation 4. The
resulting reconstructed signal has less high-frequency content (Figure 18k), and is blurred in the spatial

domain (Figure 19k). When convolved by the integration grid samples (Figures 181 and 191), the spectra

of the resampled signal do not overlap (Figure 18m). In the spatial domain, the integration grid samples
(Figure 191) capture the dampened variation in the resampled signal (Figure 19m).

Thus, the prealiasing evident in the middle column is prevented in the right column. Although
preventing the aliasing comes at the cost of additional low-pass filtering, the filtering is applied as a

function of d, and so it only removes frequency content that cannot be represented by the integration grid

at distance d.

5. Results

In our implementation of this algorithm we make use of rendering hardware to quickly draw the splats, in

a manner similar to [5], [19], and [35]. For each splat we draw a polygon in world space centered at the
voxel position. The polygon is rotated so it is perpendicular to the ray passing from the eye point through

the voxel position. The splat kernel is pre-computed and stored in a 256 x 256 table which is texture
mapped onto the polygon by the rendering hardware. We use the optimal cubic spline splat kernel

reported in [5]. We attenuate the alpha channel of the polygon as a measure of splat energy when

evaluating Equation 12, and then composite the semi-transparent splat polygon into the screen buffer.

- 14-

Our renderer is a modified version of the "splat renderer" reported in [35]. For a given volume we

extract and store a subset of the voxels. For each voxel we evaluate a transfer function t = F(V, p),

where V and p are the gradient and density of the voxel, respectively; we include the voxel in the subset

if t exceeds a user-defined threshold. We store this volume subset as a 2D array of splat rows, where each

row contains only the extracted voxels. Each row is implemented as an array of voxels, but the voxels are

not necessarily contiguous, and so we must store each voxel's location and normal vector. In general each

row may contain a different numbers of voxels. Despite not storing the empty voxels, we can still traverse

this data structure in either a back-to-front or front-to-back order.

Figures 7 shows a 498 x 398 x 1 volume consisting of a single sheet, where alternate 10 x 10

squares are colored either red or white to create a checkerboard effect. The resulting dataset contains

198K splats which are rendered into a 270 x 157 image. In Figure 7a a black line is drawn at the distance

k; beyond this line there is mrore than one voxel per pixel. As expected, the upper image shows strong

aliasing effects, but these are smoothed out in the lower image.

Figure 8 shows a 512 x 512 x 103 volume containing a terrain dataset acquired from a satellite

photograph and a corresponding height field. The resulting dataset contains 386K splats (this is more than

the expected 5122 splats because extra splats are required to fill in the "holes" formed where adjacent

splats differ in height). Each column of splats is given the color of the corresponding pixel from the

satellite photograph. The dataset is rendered into a 270 x 175 image. In Figure 8a a black line is drawn at

the distance k. The upper image shows strong aliasing in the upper half of the image (containing about

90% of the data); when animated, these regions show prominent flickering and strobing effects. In the

lower image these regions have been smoothed out; and although our anti-aliasing technique does not

directly address temporal aliasing effects, when animated these regions are free of flickering and strobing

effects.

Figure 9 explores this temporal anti-aliasing in greater detail. The figure shows how a one-pixel-

wide column varies over time. To create Figure 9, a rectangular region one pixel wide by 50 pixels high

was taken from successive frames of an animation of the terrain dataset (Figure 8 is a single frame from

this animation). These rectangles were abutted to form the columns of Figure 9, and then each pixel was

expanded into a 5 x 5 block. Thus, the rows of Figure 9 are a spatial representation of the temporal

progression of the animation. Figure 9a shows the frames from the aliased dataset (Figure 8a), while

Figure 9b shows the frames from the anti-aliased dataset (Figure 8b). Note the almost random pixel

colors that occur across the rows of Figure 9a - these represent the strong flickering and strobing

artifacts that are present in the animation. In comparison, the rows of Figure 9b show smooth variations

of color, and indicate the absence of these temporal artifacts.

Figure 10 shows a 420 x 468 x 62 volume containing a microtubule study acquired from confocal

microscopy. The resulting dataset contains 103K splats which are rendered into a 270 x 270 image.

-15-

Unlike the previous images, where the viewpoint is set so that the datasets disappear into the horizon and

thus the splats have a great range of sizes (covering several pixels to much less than a single pixel), in this

image the entire dataset is visible, and the range of splat sizes is much smaller. However, because the

volume has a higher resolution than the image it is still liable to aliasing effects (all of the splats are

drawn beyond the distance k). This is shown in the upper image, which contains jagged artifacts that

shimmer when animated. In the lower image these effects have been smoothed out; when animated this

shimmering effect disappears.

Figure 11 explores the temporal anti-aliasing of the animated version of Figure 10 - it shows how

a one-pixel-wide column varies over time, and was created by the same process used to create Figure 9.

As in Figure 9, Figure 1 la shows the aliased frames, while Figure 1 lb shows the anti-aliased frames. The

microtubule dataset clearly contains less high-frequency content than the terrain dataset (Figure 8), and

consequently the microtubule animation displays less temporal aliasing. However, there is still a definite

and discernible "crawling ant" effect surrounding the edges of the microtubule structures. This is

depicted in the rows of Figure 11 a by the sudden change between the black background and the grey

voxels - in Figure 1 lb the transitions between black and grey are much smoother.

6. Analysis of Perspective Splatting Errors

The original splatting formulation by Westover [29] was only fully implemented for orthographic views.

In part this was done for efficiency reasons: for an orthographic view, only one footprint function is

needed - it can be computed once and translated to the projection point of every voxel in the volume. As

discussed in Section 3.3 above, when used to render perspective views the original splatting formulation

has two implementation inaccuracies:

(1) the footprint polygon is not aligned perpendicularly with the sight ray passing through the polygon

center, and

(2) every sight ray coming from every pixel does not traverse the footprint polygon at a perpendicular

angle.

The first condition is easy to remedy in a perspective splatting implementation, but at the cost of

additional operations per voxel. To date there is not a known way to address the second condition, outside

of the ray-driven splatting method [19], which casts rays into the volume and uses splatting kernels to

reconstruct the function at ray sample points.

This section analyzes the errors caused by these two implementation inaccuracies. It gives

recommendations for when the first condition might be tolerated in the interest of faster rendering, and it

quantifies the errors caused by the second condition.

-16-

6.1 Align Footprint Polygon Perpendicular to Center Ray

Figure 12 compares the projection of a polygon of extent 2- ext onto the image plane (located at xs on

the viewing axis). We illustrate both the correct case, where the footprint polygon is perpendicular to the

center ray, and the approximate case, in which the footprint polygon is aligned with the voxel grid. The

correct case requires that each polygon be translated to the voxel position (xv, Yv), and then rotated to be

perpendicular to the center ray. For the approximate case, each polygon only requires a translation. Thus

the approximate case can save many operations per voxel, and makes for a faster (but less accurate)

splatting implementation.

From Figure 12 we observe that the projected polygon extent Ayapprox in the approximate case is

slightly smaller than the projected polygon extent Aycorr in the correct case. Using simple trigonometric

arguments one can show that

2. ext. x/(yvsin(pc - xvcosp)3)
AYcorr = 2 2 2 (23)

xv - ext . sin(P.

where (Pc is the viewing frustum half-angle. One can also show that

2- ext. (24)
AYapprox - (4

Thus

2A"xv1
Aycorr = AYapprox c°S(X2_ ext2 sin -) AYapprox c1SPc (25)

2 2 2

since xv >> ext - sin 9c . This means that the error is largest at the boundary of the viewing frustum. For a

viewing frustum half-angle (pc= 30', this scaling factor is 1.15.

The absolute error Ayapprox - Aycorr between the correct and the approximate screen projection of a

kernel with extent ext is given by
2 2 2 2

x - coscpc(x2 - ext . sinTpc2)
AYcorr- AYapprox = 2 x i (

xvc°S(Pc(X2 - ext2 -sin%2 (26)

2 - ext- x ,(1- cosqyc) =xs(1== 2- ext. 1 .
Xv cos qXv C

This error is plotted in Figure 13 for a volume of 2563, a viewing frustum half-angle %pc=30°, and a kernel

extent of ext=-2.0. From this plot we see that voxels close to the viewplane and at the edge of the viewing

-17-

frustum suffer rather large errors: the maximum error is 0.36 times the kernel size. However, voxels far

away from the viewplane and close to the viewing axis cause only small absolute errors.

Thus we need to consider this error only for objects close to the viewing frustum boundary and

close to the viewplane. Hence, we may want to use translated and rotated footprint polygons for voxels

closer to the eyepoint, and only translated polygons for all other voxels. Note that these errors are not

only committed when mapping the extent of the polygon, but also when mapping the inside of the

polygon (e.g. the footprint lookup table) to the screen.

6.2 Align Every Sight Ray Perpendicular to Footprint Polygon

Figure 14 shows the 2D case of the footprint polygon aligned perpendicularly to the center ray. Pixel rays

other than the center ray traverse the footprint polygon at an oblique angle and should have the footprint

polygon aligned as depicted by the dotted line. The error when computing the lookup table index t for

these rays is given by

tcorr = tapprox. cOS(p, (27)

where tcorr is the correct index and tapprox is the computed index. The angle (p is largest for voxels close to

the eye and at the center of the image plane, where for a volume of 2563, a viewing frustum half-angle

Tc=300, and a kernel extent of ext=-2.0, the approximation tcorr.tapprox=0.9 9 at the polygon boundary is

rather good. Unlike the footprint polygon alignment problem discussed above, there is not a know

solution to this problem.

7. Future Work

7.1 Applications to Texture Mapping

The anti-aliased splatting technique described in this paper can also perform traditional texture mapping

of surface-based geometric primitives such as polygons and patches. This section demonstrates that the

technique provides an accurate solution to the texture sampling problem - one that is more accurate than

either mip-maps [33] or summed area tables [6].

Recall that traditional texture mapping algorithms transform a pixel (or the filter kernel) from

screen into texture space, using the inverse of the viewing transformation (Figure 15). In general, the

preimage of a square pixel is an arbitrary quadrilateral in texture space, while the preimage of a circular

filter kernel is a conic curve [10]. The highest quality (and most expensive) texture mapping techniques

integrate the texture map under this preimage [8, 9], which gives the color that is applied to the pixel.

While these texture mapping methods perform very high-quality texture mapping, they are very

-18-

expensive and are seldomly used. There are at least two reasons why they are so expensive: 1) each pixel

must be inverse transformed, and 2) the texture map must be accessed many times, and this access is

incoherent. This second point is illustrated in Figure 16, which shows what can happen when two

adjacent pixels are texture mapped. In this example, the preimages of the two pixels overlap in texture

space, which means all the texture elements in the overlapped area must be accessed twice.

Most current texture mapping implementations use mip-maps [28]. As shown in Figure 15, a

summed area table integrates the texture map in the axis-aligned rectangular bounding box of the pixel

preimage, while a mip-map integrates the texture map in the axis-aligned square bounding box. This

means that both methods integrate over a larger area than is required, and hence they perform more low-

pass filtering than is actually needed, resulting in a texture that is more blurry than necessary.

As shown by Figures 7 and 8, the anti-aliasing method presented in this paper can also be applied to

texture mapping - Figures I and 8 are simply volumetric objects, and any 2D or 3D texture map can

likewise be considered a volumetric object. Using the new technique, demonstrated in Figure 17, every

2D or 3D texture sample is mapped according to the forward viewing transformation and composited into

the image plane, using the variably-sized, attenuated filter kernel discussed above.

This technique has several advantages for texture mapping. First, the resulting filtering quality is

equivalent to high-quality methods, because each pixel only receives the contribution of those texture

samples that lie in the pixel's preimage. In particular, the filtering is of higher quality than either mip-

mapping or summed area tables. Second, the method is less expensive than methods which integrate

under the pixel preimage, because 1) each texture sample is forward transformed, which is less expensive

than an inverse-transformation, 2) no texture sample has to be accessed more than once, and 3) the

texture map is accessed coherently. A similar type of coherent texture access has been used in the REYES

rendering architecture for performance reasons [4].

7.2 Other Areas of Future Work

Another area of future work is modifying our implementation to take better advantage of the rendering

hardware. As reported in [35], depending on the machine and the number of extracted voxels, our

renderer can give real-time performance. However, our current implementation does not take full

advantage of the rendering speeds offered by the graphics hardware. Since the anti-aliased splats defined

by Equation 4 project to the same size on the screen, it would be more efficient to draw the splats directly

on the screen instead of drawing the scaled splats in eye space. We are currently looking into hardware-

supported bitbit operations to provide optimal rendering speeds.

Another area of future work is an effort in the opposite direction. In this project there is a mismatch

between the type of rendering algorithm we have written and the available programming tools: the

-19-

Silicon Graphics rendering hardware we used is designed to accelerate scenes using traditional surface

graphics primitives such as polygons and spline surfaces; it does not contain an optimized splat primitive.

To this end, new hardware architectures which better support operations which are common in volume

rendering are needed. Some possible avenues of exploration are:

"* Extended bitblt-like operators that can be sub-pixel centered and subsequently composited.

" Hardware support for point rendering using different reconstruction kernels (cubic, Gaussian, etc.)

with common footprints (circular, elliptical, etc.). Potentially this offers a far more efficient

implementation of splatting than hardware texture mapping.

"• A higher resolution alpha channel to allow for the accurate accumulation of very transparent splats.

"* Splat primitives with automatic size scaling based on their z-depth.

A splat primitive has properties of both simple points (always lying in the projection plane) and texture

maps (non-linear intensities across the primitive). We are currently working on scanline algorithms to

efficiently render splat primitives, with the goal of future hardware implementations. We are exploring

this point-based approach to viewing and rendering as an alternative to the traditional scanline rendering

of discrete objects, and we are exploring its applications for texture mapping, image-base rendering, and

volume rendering.

8. Acknowledgments

We acknowledge Daniel Cohen-Or for the terrain dataset and Noran Instruments for the confocal dataset,

The Ohio Visualization Lab at The Ohio Supercomputer Center for computer access, and David Bressan

and Rob Rosenberg of the CCS Scientific Visualization Lab at the Naval Research Laboratory for

assistance with preparing the images, the animations, and the paper.

References

[1] Bracewell, R. N., The Fourier Transform and Its Applications (2nd edition), McGraw-Hill, 1978.

[2] Bentum, M. J., Lichtenbelt, B. B. A., Malzbender, T., "Frequency Analysis of Gradient Estimators
in Volume Rendering", IEEE Transactions on Visualization and Computer Graphics, 2(3),
September 1996, pp. 242-254.

[3] Cabral, B., Cam, N., and Foran, J., "Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware", In proceedings of 1994 Symposium on Volume
Visualization (Washington, DC, October 17-18), IEEE Computer Society Press, 1994, pp. 91-98.

[4] Cook, R. L., Carpenter, L., & Catmull, E. "The REYES Image Rendering Architecture".
SIGGRAPH '87 Conference Proceedings, 21(4), pp. 95-102, July 1987.

[5] Crawfis, R., and Max, N., "Texture Splats for 3D Scalar and Vector Field Visualization", In

- 20-

proceedings of Visualization '93 (San Jose, CA, October 25-29), IEEE Computer Society Press,
1993, pp. 261-266.

[6] Crow, F. C. "Summed-Area Tables for Texture Mapping". SIGGRAPH '84 Conference Proceedings,
18(3), pp. 207-212., July 1984.

[7] Drebin, R. A., Carpenter, L., and Hanrahan, P., "Volume Rendering", Computer Graphics
(Proceedings of SIGGRAPH), 22(4), August 1988, pp. 65-74.

[8] Feibush, E. A., Levoy, M., and Cook, R. L. "Synthetic Texturing Using Digital Filters". SIGGRAPH
'80 Conference Proceedings, 14(3), pp. 294-301, July 1980.

[9] Greene, N., and Heckbert, P. S. "Creating Raster Omnimax Images from Multiple Perspective
Views Using the Elliptical Weighted Average Filter". IEEE Computer Graphics and Animation,
6(6), pp. 21-27, June 1986.

[10] Heckbert, P. S., Fundamentals of Texture Mapping and Image Warping. Masters Thesis,
Department of Electrical Engineering and Computer Science, The University of California at
Berkeley, Technical Report Number UCB/CSD 89/516, June 1989.

[11] Lacroute, P. and Levoý, M. "Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation", Computer Graphics (Proceedings of SIGGRAPH), July 1994, pp. 451-
458.

[12] Levoy, M., "Display of Surfaces from Volume Data", IEEE Computer Graphics and Applications,
8(5), May 1988, pp. 29-37.

[13] Laur, D. and Hanrahan, P., "Hierarchical Splatting: A Progressive Refinement Algorithm for
Volume Rendering," Computer Graphics (Proceedings of SIGGRAPH), 25(4), July 1991, pp. 285-
288.

[14] Machiraju, R. and Yagel, R., "Data-Parallel Volume Rendering Algorithms", The Visual Computer,
11(6), 1995, pp. 319-338.

[15] Marschner, S.R. and Lobb, R.J., "An Evaluation of Reconstruction Filters for Volume Rendering",
In proceedings of Visualization '94 (Washington, DC, October 17-21), IEEE Computer Society
Press, 1994, pp. 100-107.

[16] Mao, X., "Splatting of Non Rectilinear Volumes Through Stochastic Resampling," IEEE
Transactions on Visualization and Computer Graphics, 2(2), 1996, pp. 156-170.

[17] Max, N., "An Optimal Filter for Image Reconstruction," In Graphics Gem II, J. Arvo, Editor,
Academic Press, pp. 101-104.

[18] Miller, T., Machiraju, R., Mueller, K., and Yagel, R., "Classification and Local Error Estimation of
Interpolation and Derivative Filters for Volume Rendering", in proceedings of 1996 Symposium on
Volume Visualization (San Francisco, CA, October 27 - November 1), IEEE Computer Society
Press, 1996, pp. 71-78.

[19] Mueller, K. and Yagel, R., "Fast Perspective Volume Rendering with Splatting by Utilizing a Ray-
Driven Approach", In proceedings of Visualization '96 (San Francisco, CA, October 27 -
November 1), IEEE Computer Society Press, 1996, pp. 65-72.

[20] Mueller, K., Yagel, R., and Wheller, J. J., "Accurate Low-Contrast 3D Cone-Beam Reconstruction
With Algebraic Methods", In submission to IEEE Transactions on Medical Imaging.

[21] Novins, K.L., Sillion, EX., and Greenberg, D.P., "An Efficient Method for Volume Rendering using
Perspective Projection", Computer Graphics (Proceedings of San Diego Workshop on Volume
Visualization), 24(5), November 1990, pp. 95-102.

[22] Oppenheim, A.V., and Shafer, R.W., Digital Signal Processing, Prentice-Hall, 1975.

-21-

[23] Pfister, H. and Kaufman, A., "Cube-4 - A Scalable Architecture for Real-Time Volume
Rendering", In proceedings of Visualization '96 (San Francisco, CA, October 27 - November 1),
IEEE Computer Society Press, 1996, pp. 47-54.

[24] Reynolds R.A., Gordon D., and Chen L., "A Dynamic Screen Technique for Shaded Graphics
Display of Slice-Represented Objects", Computer Vision, Graphics, and Image Processing, 38(3),
June 1987, pp. 275-298.

[25] Sobierajski L.M. and Avila R.S., "Hardware Acceleration for Volumetric Ray Tracing," In
proceedings of Visualization '95 (Atlanta, GA, October 29 - November 3), IEEE Computer Society
Press, 1995, pp. 27-34.

[26] Swan HI, J. E., Mueller, K., MOller, T., Shareef, N., Crawfis, R., and Yagel, R. "An Anti-Aliasing
Technique for Splatting." Proceedings IEEE Visualization '97, IEEE Computer Society Press, 1997,
pp. 197-204.

[27] Swan, J. Edward II, Object-Order Rendering of Discrete Objects, Ph.D. Dissertation, Department of
Computer and Information Science, The Ohio State University, 1997.

[28] Watt, A. and Watt, M. Advanced Animation and Rendering Techniques, Theory and Practice.
Addison-Wesley Publishing Company, New York, New York, 1992.

[29] Westover, L.A., "Interactive Volume Rendering", In proceedings of Volume Visualization Workshop
(Chapel Hill, NC, May 18-19), Department of Computer Science, University of North Carolina,
Chapel Hill, NC, 1989, pp. 9-16.

[30] Westover L.A., "Footprint Evaluation for Volume Rendering", Computer Graphics (Proceedings of
SIGGRAPH), 24(4), August 1990, pp. 367-376.

[31] Westover, L.A., SPLATTING: A Parallel, Feed-Forward Volume Rendering Algorithm, Ph.D.
Dissertation, Department of Computer Science, The University of North Carolina at Chapel Hill,
1991.

[32] Wolberg, G. Digital Image Warping. IEEE Computer Society Press., Los Alamitos, California,
1990.

[33] Williams, L. "Pyramidal Parametrics". SIGGRAPH '83 Conference Proceedings, 17(3), pp. 1-11.,
July 1983., G., Digital Image Warping, IEEE Computer Society Press, 1989.

[34] Yagel, R., and Shi, Z., "Accelerating Volume Animation by Space-Leaping", In proceedings of
Visualization '93 (San Jose, CA, October 25-29), IEEE Computer Society Press, 1993, pp. 62-69.

[35] Yagel, R., Ebert, D.S., Scott, J., and Kurzion, Y., "Grouping Volume Renderers for Enhanced
Visualization in Computational Fluid Dynamics," IEEE Transactions on Visualization and
Computer Graphics, 1(2), 1995, pp. 117-132.

- 22-

Figures and Tables

volume
(a)

- ,/'ixels

ft filter footprint
kernel' -74

y filter extent

-image-space splat
>I coordinates

x filter extent

(b)

3D filter kernel

integrate along
one dimension

2D filter kernel

(c)

FIGURE 1. Overview of the splatting algorithm. (a) Projecting each voxel from the volume raster
into the image plane. (b) Positioning each splat on the screen and compositing the contribution
into each pixel. (c) The 3D rotationally symmetric filter kernel is integrated to produce a 2D filter
kernel or "footprint table".

- 23 -

splat 1 splat 2 splat I splat 2

Q 4 1
13D

2D

(a) (b)

FIGURE 2. The overlapping splat problem. Assume that splat 1 is drawn before splat 2. (a) The
desired result: the splat contributions are summed where they overlap. (b) The actual result:
splat 2 is composited on top of splat 1, and splat 1 is occluded where the splats overlap.

- 24-

volume raster

eye +z

integration grid D-
Sk

(a) Eye Space

view plane volume raster

integration grid -. •••- ,

Dpr

kp S
'

(b) Perspective Space

FIGURE 3. Resampling the volume raster onto the integration grid. (a) In eye space. (b) In
perspective space.

- 25-

Eye Space Perspective Space

+y +yp

+y +Yp

view plane view plane
splats-ý.

eyei +

eye ~ T+- T T T T T[-- T[T- -+Z... -+zP4T 0-- i -f -. i • .-

k Ik

-y-y

-Y(a) - (b)
Standard Splatting

view plane view planesI

eye- 26- +Z pT

D
k _ _ _ _ _

(C) Anti-Aliased Splatting (d)

FIGURE 4. A comparison of the standard splatting method (top) with our anti-aliased method
(bottom). (a) The standard splatting method in eye space. (b) The standard splatting method in
perspective space. (c) The anti-aliased splatting method in eye space. (d) The anti-aliased
splatting method in perspective space.

- 26 -

splat
+YJ splat 1

view p lane, --------

+_x S1S ,-, A Z

FIGURE 5. The geometry for attenuating the energy of splat 2.

q(d)

eye +Z

k

d

FIGURE 6. Calculating the integration grid sampling frequency.

-27-

(a)

(b)

FIGURE 7. Rendered image of a plane with a checkerboard pattern. (a) Rendered with standard
splatting; the black line is drawn at distance k. (b) Rendered with anti-aliased splatting.

-28-

(a)

(b)

FIGURE 8. Rendered image of a terrain dataset from satellite and mapping data. (a) Rendered
with standard splatting; the black line is drawn at distance k. (b) Rendered with anti-aliased
splatting.

-29-

(a) (b)

FIGURE 9. Animated sequence of the dataset in Figure 8. (a) Sequence from aliased animation.
(b) Sequence from anti-aliased animation.

-30-

(a)

(b)

FIGURE 10. Rendered image of a microtubule dataset acquired from confocal microscopy. (a)
Rendered with standard splatting. (b) Rendered with anti-aliased splatting.

-31-

(a) (b)

FIGURE 11. Animated sequence of the dataset in Figure 10. (a) Sequence from aliased animation.
(b) Sequence from anti-aliased animation.

/

,' "correct footprint
image plane polygon

AycorrY.

A el- approx. footprint
Ay -polygon

Eye x v

Xs

FIGURE 12. Errors from the non-perpendicular alignment of the footprint polygon.

-32-

1.5

1

0.5

0
350

0I 0 •2 •00 2500 5

FIGURE 13. Error behavior of the non-perpendicular alignment of the footprint polygon, plotted
as a function of x, (distance from the view plane) and (pc (viewing frustum half-angle). The

maximum error is 1.46.

kernel

image plane tapprox

\lfootprint polygons

Eye

FIGURE 14. Errors from the non-perpendicular traversal of the footprint polygon.

-33-

inverse transtorm
maping

texture space screen space
Sr pixel

\direct convolution (pixel preimage)

summed area table

mip-map

FIGURE 15. Traditional texture mapping, showing the pixel preimage for direct convolution, a
summed area table, and mip-mapping.

inverse transformmapping
texture space •xscreen space

1--• pixels

FIGURE 16. Traditional texture mapping, showing the preimages of two adjacent pixels.

-34-

torward transtorm
mapping

texture space screen space

FIGURE 17. Texture mapping with the new method discussed in this paper.

- 35 -

C

0.) �1)

-o
C C

0.)

.� Ca

0.0
0.) Ca

0.)

- Ca

Ca
V

-�

0.) - 4- 'C
-.---- 0.0

ii 4-

0.0
Ca

0
'C
0.0.

0

0.0

.1)1
.� CO

CO
C

0.)
0.0

0.)
'C

o .�4
0.)

0.0
0,

C
0.)-S 4-

00

__ 0.0
Ca

C

-" .-

-o
Ca

'C

c� -o 0.)

- .�
U Ca

C.)

0.
C 0.) C..

Ca

I
-�

V 0.0�.)L. .� 0.�

0.0

0.)

*.C

0.)
0'C

00

4-
C 0*1

0,
00 -- 4

CO Ca

Cd�

0.) 0.0
-d

C '�
Cd)

-� � C
0.0

-

0.0
Ca

-�

C-S � Ca 0.)

'C 0 'C
-4

� 0 Ca

4�4

0

'�. E o� u 2
C CO

Ca
A

Ca
I

'C
00

-� .-
-�

0 0.)
4-

o -G-
'CCO
4- o

0.)
0.0.2

.0.41
0.1)
C

C -�

CO
0.0

0,
0

0.)
0) 00

0.)

0.)
4-

4-

.0 (1 -o 0.)

-36-

0

ca T0

-A-

to -
a) a)

0 .~4

0)

a)

040

to

u, .sxao0'*

- ~ a)-37 -

Author Affiliations

" J. Edward Swan II is with The Naval Research Laboratory, Code 5580, 4555 Overlook Ave SW,

Washington, DC 20375-5320. E-Mail: swan@acm.org

" Klaus Mueller is with the Department of Computer and Information Science, The Ohio State

University, 2015 Neil Avenue, Columbus, OH 43210-1277. E-Mail: mueller@cis.ohio-state.edu

" Torsten Moller is with the Department of Computer and Information Science and the Advanced

Computing Center for the Arts and Design, The Ohio State University, 2015 Neil Avenue, Columbus,

OH 43210-1277. E-Mail: moeller@cis.ohio-state.edu

" Naeem Shareef is with the Department of Computer and Information Science and the Advanced

Computing Center for the Arts and Design, The Ohio State University, 2015 Neil Avenue, Columbus,

OH 43210-1277. E-Mail: shareef@cis.ohio-state.edu

" Roger Crawfis is with the Department of Computer and Information Science and the Advanced

Computing Center for the Arts and Design, The Ohio State University, 2015 Neil Avenue, Columbus,

OH 43210-1277. E-Mail: crawfis @ cis.ohio-state.edu

" Roni Yagel is with the Department of Computer and Information Science and the Advanced

Computing Center for the Arts and Design, The Ohio State University, 2015 Neil Avenue, Columbus,

OH 43210-1277. E-Mail: yagel@cis.ohio-state.edu

-38-

